Novel Antibiotics Pyrisulfoxin A and B Produced by *Streptomyces californicus*

NOBUAKI TSUGE,[†] KEIKO FURIHATA, KAZUO SHIN-YA, YOICHI HAYAKAWA and HARUO SETO*

Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan

(Received for publication March 4, 1999)

In the course of our screening for new antibiotics active against P388 murine leukemia cells, novel antibiotics named pyrisulfoxin A (1) and pyrisulfoxin B (2) were isolated from the culture broth of *Streptomyces californicus* BS-75. In this paper, we report the isolation and structures of 1 and 2.

The producing organism was cultivated at 27°C for 4 days on a rotary shaker in 500-ml Erlenmeyer flasks containing 100 ml of a medium consisting of dextrin 2%, galactose 2%, corn steep liquor 0.5%, bacto soytone 1%, $(NH_4)_2SO_4$ 0.2% and CaCO₃ 0.2%. The pH of the medium was adjusted to 7.4 before sterilization.

After removal of the mycelium by centrifugation, the supernatant (8 liters) was adjusted to pH 7.0 with 1 N HCl and applied to a column of Dowex 1 (OH⁻). The column was washed with water and then the active

principle was eluted with 0.5 N HCl. The eluate was adjusted to pH 7.0 with 3 N NaOH, and applied to a column of Diaion HP-20. The active principle was eluted with MeOH and after evaporation, the residue was applied to an ODS column. The active fraction eluted with 70% aqueous MeOH was finally subjected to preparative HPLC using a YMC ODS column developed with 40% aqueous CH₃CN. Active eluates were separately concentrated to dryness to yield colorless powders of 1 (6.5 mg) and 2 (1.6 mg).

The physico-chemical properties of 1 and 2 are shown in Table 1. The molecular formula of 1 was determined as $C_{13}H_{13}N_3O_3S$ by HRFAB-MS. As summarized in Table 2, the ¹³C and ¹H NMR spectral data of 1 are very similar to those of caerulomycin A (3)^{1,2)} which was isolated as an antimicrobial substance.

Comparison of ¹³C NMR spectral data of these two compounds enabled us to assign 11 out of the 13 signals of **1**. The spectral differences between **1** and **3** were that the olefinic methine observed at $\delta_{\rm C}$ 105.5 in **3** was replaced by a quaternary olefinic carbon at $\delta_{\rm C}$ 127.7 (C-5) in **1** with appearance of a new methyl singlet (C-9) at $\delta_{\rm C}$ 39.4 in the latter. From the molecular formula of **1** and the chemical shifts of C-5 and C-9, this new methyl group was ascribed to a methylsulfoxide group. The HMBC spectrum of **1** showed a long-range coupling from the methyl signal (9-H) to C-5 (Fig. 2). Therefore, the methylsulfoxide group was allocated at the C-5 position. The configuration of the oxime group was determined to be *anti* based on a weak NOE observed between 7-H

Table 1. Physico-chemical properties of pyrisulfoxin A and pyrisulfoxin B.

	Pyrisulfoxin A	Pyrisulfoxin B	
Appearance	Colorless powder	Colorless powder	
MP(°C)	178~180	163~165	
Molecular formula	C ₁₃ H ₁₃ N ₃ O ₃ S	$C_{13}H_{11}N_3O_2S$	
HRFAB-MS Calcd Found	229.0757 (M+H) ⁺ 229.0787	274.0652 (M+H) ⁺ 274.0673	
UV λ_{max}^{MeOH} nm (ϵ)	243 (23,500) 288 (14,500)	243 (17,900) 288 (12,700)	
IR $v_{max}(KBr) \text{ cm}^{-1}$	3180, 1565, 1540, 1465, 1355, 990, 730	2230, 1570, 1540, 1460, 1370, 1250, 955, 750	

Present address: House Foods Corporation, 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan.

	1*		2*		3**	
No.	δ_{C}	$\delta_{\rm H}$	$\delta_{\rm C}$	δ_{H}	$\delta_{\rm C}$	δ_{H}
2	159.7	· · · · · · · · · · · · · · · · · · ·	161.2		156.9	
3	104.3	8.12 (s)	106.6	8.29 (s)	106.5	7.91
4	165.6		164.7		166.6	
5	127.7		131.9		105.5	7.35
6	150.6		137.4		153.4	
7	147.7	8.88 (s)	114.5		148.8	8.72
8	56.6	4.13 (s)	57.0	4.15 (s)	55.5	3.96
9	39.4	3.06 (s)	39.9	3.09 (s)		
2'	154.4		152.9		154.6	
3'	122.0	8.50 (ddd 8.0, 1.3, 1.0)	122.2	8.51 (ddd 8.0, 1.0, 1.0)	120.7	8.40
4'	137.2	7.83 (ddd 8.0, 7.5, 1.8)	137.4	7.87 (ddd 8.0, 7.5, 1.8)	137.2	7.98
5'	124.9	7.39 (ddd 7.5, 4.9, 1.1)	125.5	7.40 (ddd 7.5, 4.9, 1.1)	124.4	7.51
6'	149.1	8.68 (ddd 4.8, 1.8, 1.0)	149.2	8.67 (ddd 4.8, 1.8, 1.0)	149.2	8.72
NOH		9.16 (b)				11.72

Table 2. ¹³C and ¹H NMR of pyrisulfoxin A (1), pyrisulfoxin B (2) and caerulomycin A (3).

* Taken in CDCl₃

** Data taken from ref. 3

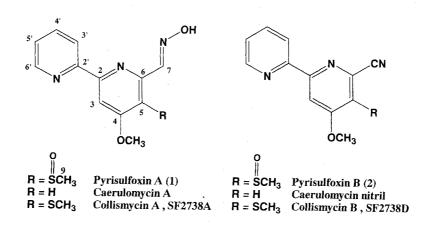


Fig. 1. Structures of pyrisulfoxin A (1) and B (2).

and N-OH. These data suggested that the structure of 1 is as shown in Fig. 1.

The molecular formula of **2** was determined as $C_{13}H_{11}N_3O_2S$ by HRFAB-MS. The IR spectrum showed a weak absorption band at 2230 cm⁻¹ characteristic to a cyano group and no hydroxyl absorption. Comparison of the NMR data of **2** with those of **1** showed

the absence of the protons due to the oxime group (H-7, N–OH), and an upfild shift of C-7 ($\delta_{\rm C}$ 114.5 vs. $\delta_{\rm C}$ 147.7). From these results, the structure of **2** was deduced as shown in Fig. 1.

1 showed cytotoxicity against P388 murine leukemia cells with IC_{50} values of 0.1 μ g/ml. However, 2 showed no cytotoxicity against P388 murine leukemia cells. Re-

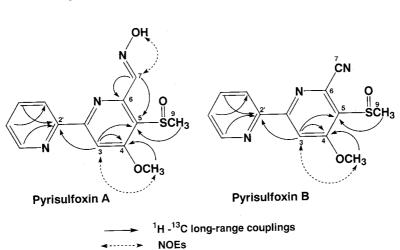


Fig. 2. ¹H-¹³C long-range couplings and NOEs.

cently, collismycin A and SF2738A have been reported as antimicrobial and antitumor agents.^{3,4)} In place of the methyl sulfoxide function in 1, these compounds possess a methylthio group at the 5 position of 1. The cytotoxic activity of 1 was comparable to that of collismycin A and SF2738A. Detailed studies on other biological activities of pyrisulfoxins are under way.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas, The Ministry of Education, Science and Culture, Japan, to H.S.

References

- DIVEKAR, P. V.; G. READ & L. C. VINING: Caerulomycin, a new antibiotic from *Streptomyces caeruleus* Balacci. II. Structure. Can. J. Chem. 45: 1215~1223, 1967
- 2) MCINNES, A.; D. G. SMITH, J. L. C. WRIGHT & L. L. VINING: Caerulomycins B and C, new 2,2'-dipyridyl derivatives from *Streptomyces caeruleus*. Can. J. Chem. 55 : 4159~4165, 1977
- 3) SHINDO, K.; Y, YAMAGISHI, Y. OKADA & H. KAWAI: Collismycins A and B, novel non-steroidal inhibitors of dexamethasone-glucocorticoid receptor binding. J. Antibiotics 47: 1072~1074, 1994
- 4) GOMI, S.; S. AMANO, E. SATO, S. MIYADOH & Y. KODAMA: Novel antibiotics SF2378A, B and C, and their analogs produced by *Streptomyces* sp. J. Antibiotics 47: 1385~1394, 1994